Another way to look at quantum gravity biphotons is to first consider the single photon transfer from an excited source to excite a phase-matched absorber ground state. As long as the source and absorber are close enough given the dephasing lifetime, a superposition forms between source and absorber. This superposition will collapse by dephasing the source and leaving the absorber excited or by dephasing the absorber and leaving the source excited. The superposition can also result in a chemical bond between the source and absorber and a new molecular ground state.
Accelerating light leads to the simple axioms of discrete aether and quantum action. Matter action augments the more limited reality of continuous space, motion, and atomic time. With the quantum action of the Schrödinger equation and a single fundamental aether particle, two constants predict all action and all other physical constants. In the discovery of truth, there are only atoms and quantum action.
Search This Blog
Saturday, August 5, 2023
Quantum Gravity Biphotons
Sunday, June 4, 2023
Quantum Gravity Spin and Phase
Quantum gravity has scalar attraction but also both spin and phase and so quantum gravity differs from relativistic gravity, which has only scalar attraction and neither quantum spin nor quantum phase. Quantum electromagnetism (EM) has both spin and phase and so quantum EM has both scalar attraction or repulsion of static charges as well as the vector forces of moving charges. Quantum gravity then has the scalar attraction of bodies as well as the vector forces of moving bodies.
The collapsing quantum aether universe drives both quantum gravity and quantum EM and while it is the oscillation of quantum aether that drives EM, it is the collapse of quantum aether that drives quantum gravity. All bodies in the collapsing universe lose mass by dephasing and radiation and so stars that lose mass by radiation have even more vector gravity than cooler bodies. Star radiation leads to coupling of star motions around their centers of mass that contributes to scalar gravity and so vector gravity is not apparent with a simple binary star. However, star clusters and galaxies show the added velocities of vector gravity that Science now associates with dark matter.
Like neutron spin and phase, the spin and phase of the universe does not really depend on the motion of charges. However, the universe spin phase does couple with the spin phase of local matter and so there is a slight asymmetry to all universe matter spin phases.
Monday, May 8, 2023
Five Great Issues of Science
Five Great Issues of Science
1) Treating Cancer (Health);
2) Treating Heart Disease (Health);
3) Treating other Diseases (Health);
4) Placing People into Space (Knowledge);
5) Reducing Energy Costs (Energy);
6) Improving Transportation (Transportation);
7) Cleaning Up Defense Wastes (Security);
8) Maintaining Economic Stability (Money);
9) Reducing Human Environmental Impact (Environment);
10) Stabilizing Population Growth (Environment);
11) Maintaining World Peace (Security);
12) Maintaining National Defense (Security);
13) Harnessing Nuclear Energy (Energy);
14) Reducing Crime and Faction Conflicts (Security).
Tuesday, April 18, 2023
Inflation from Printing Money Pays Debts
A government collects taxes and other revenues to pay for its spending and borrows money to pay for its big projects. A government prints money and loans that money to banks for a small interest payment that then pays for printing and distributing the money. Banks then use that money for loans that the Banks charge interest and withdrawals that the banks pay interest. When a government spends more than its revenues, it must borrow money just to pay for that excessive spending. The government prints money called bonds with a promise to pay interest in the future despite the extra cost of debt interest payments, which the government pays for with taxes and inflation. Roads, bridges, dams, and government buildings are all examples of debt purchases that benefit the future as long as taxes less expenses represents tolerable inflation. When government debt payments exceed taxation, government can then raise taxes or take on new debt to repay the old debt. A government takes on debt by simply printing money because the government bond debt is actually equivalent to printing money.
Banks need government printed money as cash to support consumer buying and selling and so banks must take on government debt just to support a producer-consumer economy. The cost of that government debt is in the interest payments for its bonds as well as in the inflation of consumer goods and services. In other words, in the absence of government taxation, inflation is how the producer consumer pays for government spending.
Both government taxes and inflation pay for government spending and so money is just the same promise to pay as are government bonds. While an investor must hold a bond until it matures before reclaiming it as cash, cash is then simply a government bond as money that a consumer can immediately reclaim as goods and services less inflation. The government withholds taxes on every paycheck and so holds that cash for the year.
When debt is inexpensive, producers and consumers borrow more and are therefore willing to pay more for goods and services and that increases inflation. However, producer borrowing more also increases economic growth just as consumer spending more also increases economic growth.
When the government prints money for spending in excess of revenues, inflation occurs as a government tax on producers and consumers to pay for that excessive government spending. A government printing more money than its economic growth will cause excess inflation until the government prints just enough money to sustain growth with acceptable inflation.
Acceptable inflation occurs when the economy is growing and producers and consumers believe the government is not printing money in excess of economic growth.
When the government spends more than its revenues, the government prints more money to pay for that excessive spending and that increases inflation, which then pays for that excessive spending.
When the government spends less than revenues, the government prints less money and that decreases inflation.
When government increases its interest rate, that makes consumer debt more expensive and so decreases inflation.
When government lowers its overnight interest rate, that makes producer and consumer debt less expensive and so increases inflation, but also growth.
Acceptable inflation occurs when the economy is growing and consumers believe the government can repay its debt. Inflation then is just enough to pay for the cost of money and to allow enough excess money for economic growth.
Saturday, February 25, 2023
Update on discrete aether sunspot number prediction... beating NOAA like a rug...
Saturday, February 18, 2023
Variation of Fine-Structure Constant over Cosmic Time
In a collapsing universe, cosmic time is different from an atom time since atom time is never at rest given the evolution of collapse rate from zero at the cmb creation to the speed of light at the final blackhole destiny. The red shifts of galaxy look-back spectra in the collapsing universe, unlike an expanding universe, are then due to both galaxy cosmic age as well as the velocity of universe collapse. Blackhole horizons in the collapsing universe are no longer singularities even though they still stop atom time and still exist in the flow of cosmic time of collapse.
In the expanding universe of contemporary Science, cosmic time is the same as atom time at rest with a constant expansion, but atom time does depend on relative velocity and acceleration. According to Science, the red shifts of galaxy spectra are then due to increasing galaxy velocities with look-back time in the expanding universe. Blackhole singularity horizons, though, do stop atom time and yet still exist in the flow of cosmic time expansion.
While some constants of Science are constants in the collapsing universe, the fine-structure constant as well as the speed of light do vary with universe collapse, but the fine-structure splittings of distant galaxies still remain proportional to contemporary splittings. Many argue against universe collapse since the fine-structure splittings of distant galaxies are proportional to contemporary fine-structure splittings. However, the fine-structure splittings are proportional to ratio of transition energy and relativistic electron energy, En/(mec2), and this ratio is constant in the collapsing universe [see Griffiths and Schroeter, Introduction to QM, 2018, 7.3.2]. This is because while En and c both increase in the collapsing universe, me decreases over cosmic time.
The collapsing universe is Lorentz invariant and maintains the equivalence of mass and energy just as does the expanding universe relativity. But the speed of light varies in the collapsing universe since the speed of light reflects the universe collapse rate for each epoch and not for all epochs as in the expanding universe. The classical electron spin rate, c/α, in the collapsing universe is constant and so α the fine-structure constant varies in the same way as does c.