Macroscopic gravity particles in general relativity have the property of mass but do not have the property of phase. However, quantum particles have both the properties of mass and quantum phase, which means that quantum matter periodically goes out of and comes back into existence with a complementary spin. There is then a perpetual cycle of matter oscillation that defines the quantum mystery of existence and relativistic gravity is simply missing this oscillation of matter.
Classical science and relativistic gravity define existence as unchanging matter moving along determinate paths in space and time. The classical determinate path of a particle with relativistic gravity does not change unless acted on by some other force. Quantum science, though, defines existence as a perpetual matter action or oscillation that never stops and so there is an inherent uncertainty in the path of every quantum particle through space...even without any other action force.
Just as quantum spin represents the action of a quantum particle upon itself with photons, the spin of quantum gravity represents the action of a quantum gravity particle upon itself with biphotons. Its just that the states of quantum gravity are 1e39th power weaker than those of quantum charge. Gravity particle wavefunctions then show dispersions that span the universe and it is convenient to use biphoton exchange for gravity quadrupoles just as single photon exchanges drive charge force. There is a photon of charge exchange that binds every atom of matter and that exchange photon entangles with its complementary emitted photon from creation at the CMB.
Just as there is an uncertainty with quantum spin, there is a corresponding uncertainty with gravity quadrupole spin driven by gravity self energy. However, the complementary effect of gravity bodies on each other means that there are still determinate paths for those bodies. The complementary determinate paths of two gravity bodies, though, are still subject to uncertainties in matter and action along those paths.
It is therefore not possible to precisely measure both the matter and the action of two orbiting bodies even though it is possible to know their respective paths though space and time with arbitrary precision. It is only the noise of chaos that limits measurements of gravity paths and it is the noise of quantum phase that limits measurements of matter and action.
Perpetual photon exchange binds every atom today from the emission of a photon of light at the CMB creation when electrons bonded to protons and other matter. Those two events are entangled with each other and define the size of the universe with a biphoton gravity quadrupole. The coupling between the emission of CMB photons and the photon exchange of stable atoms is the mystery of quantum gravity. This means that gravity force depends on the size of the universe and since the size of the universe changes over time, gravity therefore also depends on time.
Typical descriptions of what is often called the mystery of quantum particle dispersion often do not include any description of phase or of phase decay. This is odd because quantum phase and quantum phase decay are really at the root of the quantum mystery. Classically, a single particle is in a knowable state even though it can be in either of two states or places. Once an observer measures that particle state, it is then certain that the particle was always in that knowable measured state even before the measurement.
A quantum particle, however, can be in a superposition of two states or places and when an observer measures the particle state, the particle collapses into just one state or place. However, the particle was perpetually oscillating and therefore was never in just one knowable state or place before the observation. Even when an observer sees a quantum particle on one path, that does not mean that the quantum particle was not perpetually oscillating. Rather it means that the quantum particle was on a superposition of both paths until the observer saw it and that quantum coherence decayed into one state.
Much quantum knowledge is therefore unknowable and therefore quantum knowledge involves both knowable classical knowledge as well as the unknowable. However, we do have a quantum intuition that also represents choices that we make by our gut or instinct. Thus, our knowledge, reason, and intuition all contribute to our wisdom and the choices that we make.